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ABSTRACT

 One problem with using chaotic synchronization to communicate is that the
response system is nonlinear, so that any variation in the amplitude of the chaotic driving
signal degrades synchronization of the response system to the drive system. In this work
it is shown that it is possible to design a response system that reproduces a scaled version
of the chaotic driving signal when the drive signal is attenuated or amplified. A simple
communications system is demonstrated to show that this type of synchronization is
useful, and the effects of noise on the communications system are studied.

Keywords: chaos, communication, spread spectrum, synchronization

1. INTRODUCTION

Synchronizing of chaotic systems that are coupled by a one-way driving is a
popular research topic, with much speculation on possible applications to
communications 1-14 One problem in using a chaotic signal as an information carrier is
the problem of amplitude distortion, or fading. If a chaotic signal is broadcast, for
example, there will be some attenuation between transmitter and receiver. Since the
response system which is driven by the transmitted chaotic signal is nonlinear, changing
the amplitude of the chaotic driving signal will throw the response system out of
synchronization. It is possible to use a linear response system, but this eliminates the
possibility of cascading response systems 3, 4, which makes transmitting and detecting
information much easier.

This work shows how to build a simple chaotic system so that the response
system is not sensitive to the amplitude of the driving signal, but is still nonlinear. It is
also shown that this type of system can still be used to send and receive information.
More detailed results will be reported in a longer paper15.

2. THEORY OF SYNCHRONIZATION

The theory of the synchronization of chaotic systems is described in detail
elsewhere 2, so only a brief description is included here. We begin with a dynamical
system that may be described by the ordinary differential equation

u t  = f u                                                               (1)

The system is then divided into two subsystems, u= (v,w);



v = g(v,w)
w = h(v,w)

                                                               (2)

where v=(u1,...,um), g=(f1(u),...,fm(u)), w=(um+1,...,un), and
h=(fm+1(u),...,fn(u)). The division is truly arbitrary since the reordering of the ui
variables before assigning them to v, w, g, and h is allowed.

A first response system may be created by duplicating a new sub-system w'
identical to the w system, substitute the set of variables v for the corresponding v' in the
function h,  and augment Eqs. (2) with this new system, giving,

v = g(v,w)
w = h(v,w)

w ' = h(v ,w')
.                                                    (3)

If all the Lyapunov exponents of the w' system (as it is driven) are less than zero,
then w' - w → 0 as t → ∞ .

It is possible to take this system further. One may also reproduce the v subsystem
and drive it with the w' variable 3, 4, giving

    

v = g(v,w)
w = h(v,w)

w’ = h(v,w’)
v '' = g v '', w '

                                             (4)

 If all the Lyapunov exponents of the w', v'' subsystem are less than 0, then v'' → v
as t → ∞. The example of eq. (4) is referred to as cascaded synchronization.

3. AMPLITUDE INDEPENDENT SYNCHRONIZATION

In the cascaded synchronization example of eq. (4), there must be at least one
nonlinearity in the response system. If the amplitude of the driving signal v  is changed,
in most cases synchronization will not occur. This would be a problem if the cascaded
chaotic system were used as a communication system where the chaotic signal had to be
transmitted and suffered some unknown attenuation.

To maintain synchronization when the drive signal has been attenuated (or
amplified), the response system must contain scale-invariant nonlinearities, nonlinear
functions f(x)  with the property f(Ax) = Af(x) . One class of nonlinear functions that have
this property are piecewise linear functions that have their only breakpoint at 0. A
piecewise linear function consists of two or more line segments. It is also necessary to
include an amplitude-dependent nonlinear function to fold the motion back into a
bounded region.



Since the nonlinear folding function was amplitude dependent, it could not be
included in the response system, so a full cascaded response system could not be built. By
the proper choice of nonlinear folding function, however, it was possible to build a
nonlinear response system that had some of the desirable properties of a cascaded
response system. The nonlinear folding function produces the signal ud which drives the
nonlinear response system. This is similar to the work of Kocarev and Parlitz 10 in which
the driving signal may be some function of the variables of the chaotic drive system.

4. CIRCUIT EXAMPLE

The chaotic circuit described below fulfills all of the requirements described in the
previous section. The nonlinear folding function is g1(y), while amplitude-invariant
nonlinearities are provided by g2(x) and g3(y) . The equations for the circuit are:
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where the time factor α=104 s-1.  SI represents an information signal that may be injected
into the circuit. Kocarev and Parlitz 10 also used this method to encode information  on a
chaotic carrier. Figure 1 is a chaotic attractor from this circuit. The largest Lyapunov
exponent for this circuit was calculated numerically by the method of Eckmann and
Ruelle 16 to be 765 s-1.

The response circuit was driven by a scaled version of g1(y). The response circuit
equations were:



u Ag y

dx

dt
x u z
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x u y
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g u w
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where A is a scaling factor that may be greater or less than 1.0. The largest Lyapunov
exponent for the response circuit, calculated numerically from eq. (6), was -1470 s-1,
independent of the value of A.

Fig. 1 Chaotic attractor from the circuit.

Synchronization of the drive and response circuits is confirmed in Fig. 2(a), which is a
plot of y' vs y  from the circuit, for A=1.0. When A is not 1, y' is a scaled version of y , as
may be seen in Fig. 2(b), which shows y' vs y when A=0.2. Figure 3 shows the attractor
for the response circuit when A=0.5. This attractor is just a scaled version of the drive
system attractor of Fig. 1.

5. COMMUNICATIONS

In order to send information from the drive to the response, it is not enough
merely to synchronize the y and y' signals. It must be possible to determine whether or
not the systems are synchronized by comparing the drive signal ud to the y' signal. The
folding function g1(y) can be chosen so Synchronization may be detected by checking the
value of ud when y' crosses 0; if ud =0 at this time, the systems are synchronized. This
does limit the rate at which information may be transmitted to the average rate at which y'
crosses 0, about 2 KHz for this system.



     

Fig. 2. (a) y' signal from the response circuit vs y signal from the drive circuit, showing synchronization,
when the scaling factor A from eq. (6) is 1.0. (b) y' signal from the response circuit vs y signal from the
drive circuit when A=0.2, showing that y' is a scaled down version of y .

Fig. 3. Chaotic attractor from the response circuit when the scaling factor A from eq. (6) is 0.5,
showing that this attractor is a scaled down version of the drive circuit attractor in Fig. 1.

There are many ways in which information may be encoded on a chaotic carrier.
In this work, the information is added into the dynamical system as the signal SI in eq.
(5). This type of encoding was used because it does not have a large effect on the
amplitude of the chaotic signal ud, since the response circuit is not sensitive to changes
in the amplitude of ud. Kocarev and Parlitz 10 have noted that it is difficult to detect this
kind of signal encoding in the power spectrum of the drive signal, and the same effect is
seen here. The form of the information signal was SI = 2.0sin(πfIt), where fI, the
frequency of the information signal, ranged from 5 to 200 Hz. The maximum information



frequency was limited by the largest negative Lyapunov exponent of the response system
(-1470 s-1), which governed how fast the response could track a changing drive signal.

In order to detect the information in the chaotic carrier signal ud, the negative-
going zero crossings of the signal y' from the response circuit were used to strobe ud,
generating an detected signal ∆ . This is essentially the same process that one would use

to generate a Poincare section, but ∆  (=∆ (t) ) was used as a 1-dimensional time series.

A low frequency power spectrum for ud when the scaling factor A=1.0 and the
information frequency fI = 30 Hz was recorded. The signal to noise ratio at the
information frequency in the power spectrum of ud was measured by subtracting the
average signal power (in dB) within 2 Hz of fI  (not including fI ) from the signal power at
fI . The signal to noise ratio was 4 dB.

A low frequency power spectrum of the detected signal ∆. when fI = 30 Hz was
also recorded. The signal to noise ratio at the information frequency was 23 dB. When the
scaling factor A was 0.5, the signal to noise ratio at the information frequency was still 22
dB. For a small enough A, the signal to noise ratio will degrade due to circuit mismatch
and noise.

6. NOISE AND FILTERING

In order to be useful for communications, the response circuit must not be too
sensitive to noise. The two types of noise that were considered here were additive
deterministic noise near the chaotic carrier frequency and low frequency additive noise.

The most difficult type of noise to separate from a chaotic carrier signal should be
a signal from another chaotic system with a similar frequency spectrum. A contaminating
signal ψ  with a frequency spectrum similar to the spectrum of ud may be generated by a
Rossler circuit17 described by the relations:
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where the time factor α is 104 s-1, Γ is 0.05, β is 0.5, λ is 1.0 , γ is 0.133 and µ is 15.  The

ψ  signal was added to ud so that the rms amplitude of ψ was up to 1.4 times the rms
amplitude of ud.

When the contaminating signal ψ  was added to ud, an information frequency fI of
10 Hz was used. Lower information frequencies improve the signal to noise ratio in the



detected signal ∆ because each cycle of the information signal is avreaged over more zero

crossings of y'. When fI was 10 Hz and the rms amplitude of ψ  was 1.4 times the rms

amplitude of ud, the signal to noise ratio of the detected signal ∆  at the information
frequency  was 15 dB (with no added noise the signal to noise ratio was 26 dB). The
signal to noise ratio decreased rapidly for larger amplitudes of the contaminating signal. It
is possible to recover the information signal when a contaminating signal is present
because the contaminating signal ψ   is generated by a chaotic system that is not too
similar to the drive system of eq. (5). The part of the output signal y' from the response
circuit caused by ψ  is not correlated with ψ,  so this contribution will average to zero
(unless the contaminating signal is large enough to substantially alter the dynamics of the
response circuit). This effect has been demonstrated before 18, 19

Low frequency noise has a more drastic effect on information recovery because it
cannot be averaged away. In this case, it can be filtered out, since the chaotic signal ud
contains little power at low frequencies. An SR-560 preamp set to have a gain of 1 was
used as a high pass filter that rolled off frequencies below 300 Hz at 12 dB/octave. The
signal ud (with an information frequency of 10 Hz) was passed through this filter before
driving the response system. This filter did not have much effect on ud except that it
removed a DC bias in ud. This could be corrected for in an adaptive fashion by adding a
variable DC bias to the signal used to drive the response circuit and adjusting the bias to
optimize the match between y'  and this input signal (which was a filtered version of ud).
When this adaptive bias was used, no loss in signal to noise ratio for a filtered signal with
an information frequency of 10 Hz was seen; the ratio after filtering vs 27 dB, compared
to a ratio of 26 dB without filtering. If no bias adjustment was used, the signal to noise
ratio was 19 dB. Presumably this high-pass filtering is possible because the injected
information signal frequency is mixed with the other frequencies in the chaotic attractor,
so that information is carried in a continuous band of intermodulation frequencies. An
engineering analogy would be shifting up the frequency of an information signal by
combining it in a nonlinear fashion with a higher frequency carrier. The chaotic response
circuit then serves as a demodulator, recovering the information signal.

7. CONCLUSIONS

It has been shown that unknown amplitude variations in the amplitude of a chaotic
driving signal need not be a problem when communicating with synchronized chaos.
There are still other types of distortion that may disrupt chaotic communications signals,
but the incredible variety of nonlinear systems that may be designed suggests that it may
be possible to overcome other problems as well.

It has also been shown that amplitude independent chaotic synchronization may
be used to transmit information, even in the presence of large amounts of noise. Not only
is communication in the presence of noise necessary for practical use, it also offers some
advantage in shielding signals from eavesdroppers. It has been shown that it is possible to
extract messages from chaotic signals by estimating some part of the message-free
chaotic signal 20, 21. Adding chaotic noise to a chaotic carrier signal might make
estimating the chaotic system dynamics more difficult, making it harder to extract the
message.
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